Serveur d'exploration Sulfur Transférase

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glutathione S-Transferases in the Biosynthesis of Sulfur-Containing Secondary Metabolites in Brassicaceae Plants.

Identifieur interne : 000223 ( Main/Exploration ); précédent : 000222; suivant : 000224

Glutathione S-Transferases in the Biosynthesis of Sulfur-Containing Secondary Metabolites in Brassicaceae Plants.

Auteurs : Paweł Czerniawski [Pologne] ; Paweł Bednarek [Pologne]

Source :

RBID : pubmed:30483292

Abstract

Plants in the Brassicaceae family have evolved the capacity to produce numerous unique and structurally diverse sulfur-containing secondary metabolites, including constitutively present thio-glucosides, also known as glucosinolates, and indole-type phytoalexins, which are induced upon pathogen recognition. Studies on the glucosinolate and phytoalexin biosynthetic pathways in the model plant Arabidopsis thaliana have shown that glutathione donates the sulfur atoms that are present in these compounds, and this further suggests that specialized glutathione S-transferases (GSTs) are involved in the biosynthesis of glucosinolates and sulfur-containing phytoalexins. In addition, experimental evidence has shown that GSTs also participate in glucosinolate catabolism. Several candidate GSTs have been suggested based on co-expression analysis, however, the function of only a few of these enzymes have been validated by enzymatic assays or with phenotypes of respective mutant plants. Thus, it remains to be determined whether biosynthesis of sulfur-containing metabolites in Brassicaceae plants requires specific or nonspecific GSTs.

DOI: 10.3389/fpls.2018.01639
PubMed: 30483292
PubMed Central: PMC6243137


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glutathione
<i>S</i>
-Transferases in the Biosynthesis of Sulfur-Containing Secondary Metabolites in Brassicaceae Plants.</title>
<author>
<name sortKey="Czerniawski, Pawel" sort="Czerniawski, Pawel" uniqKey="Czerniawski P" first="Paweł" last="Czerniawski">Paweł Czerniawski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań</wicri:regionArea>
<wicri:noRegion>Poznań</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bednarek, Pawel" sort="Bednarek, Pawel" uniqKey="Bednarek P" first="Paweł" last="Bednarek">Paweł Bednarek</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań</wicri:regionArea>
<wicri:noRegion>Poznań</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30483292</idno>
<idno type="pmid">30483292</idno>
<idno type="doi">10.3389/fpls.2018.01639</idno>
<idno type="pmc">PMC6243137</idno>
<idno type="wicri:Area/Main/Corpus">000175</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000175</idno>
<idno type="wicri:Area/Main/Curation">000175</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000175</idno>
<idno type="wicri:Area/Main/Exploration">000175</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glutathione
<i>S</i>
-Transferases in the Biosynthesis of Sulfur-Containing Secondary Metabolites in Brassicaceae Plants.</title>
<author>
<name sortKey="Czerniawski, Pawel" sort="Czerniawski, Pawel" uniqKey="Czerniawski P" first="Paweł" last="Czerniawski">Paweł Czerniawski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań</wicri:regionArea>
<wicri:noRegion>Poznań</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bednarek, Pawel" sort="Bednarek, Pawel" uniqKey="Bednarek P" first="Paweł" last="Bednarek">Paweł Bednarek</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań</wicri:regionArea>
<wicri:noRegion>Poznań</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plants in the Brassicaceae family have evolved the capacity to produce numerous unique and structurally diverse sulfur-containing secondary metabolites, including constitutively present thio-glucosides, also known as glucosinolates, and indole-type phytoalexins, which are induced upon pathogen recognition. Studies on the glucosinolate and phytoalexin biosynthetic pathways in the model plant
<i>Arabidopsis thaliana</i>
have shown that glutathione donates the sulfur atoms that are present in these compounds, and this further suggests that specialized glutathione
<i>S</i>
-transferases (GSTs) are involved in the biosynthesis of glucosinolates and sulfur-containing phytoalexins. In addition, experimental evidence has shown that GSTs also participate in glucosinolate catabolism. Several candidate GSTs have been suggested based on co-expression analysis, however, the function of only a few of these enzymes have been validated by enzymatic assays or with phenotypes of respective mutant plants. Thus, it remains to be determined whether biosynthesis of sulfur-containing metabolites in Brassicaceae plants requires specific or nonspecific GSTs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30483292</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Glutathione
<i>S</i>
-Transferases in the Biosynthesis of Sulfur-Containing Secondary Metabolites in Brassicaceae Plants.</ArticleTitle>
<Pagination>
<MedlinePgn>1639</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2018.01639</ELocationID>
<Abstract>
<AbstractText>Plants in the Brassicaceae family have evolved the capacity to produce numerous unique and structurally diverse sulfur-containing secondary metabolites, including constitutively present thio-glucosides, also known as glucosinolates, and indole-type phytoalexins, which are induced upon pathogen recognition. Studies on the glucosinolate and phytoalexin biosynthetic pathways in the model plant
<i>Arabidopsis thaliana</i>
have shown that glutathione donates the sulfur atoms that are present in these compounds, and this further suggests that specialized glutathione
<i>S</i>
-transferases (GSTs) are involved in the biosynthesis of glucosinolates and sulfur-containing phytoalexins. In addition, experimental evidence has shown that GSTs also participate in glucosinolate catabolism. Several candidate GSTs have been suggested based on co-expression analysis, however, the function of only a few of these enzymes have been validated by enzymatic assays or with phenotypes of respective mutant plants. Thus, it remains to be determined whether biosynthesis of sulfur-containing metabolites in Brassicaceae plants requires specific or nonspecific GSTs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Czerniawski</LastName>
<ForeName>Paweł</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bednarek</LastName>
<ForeName>Paweł</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Brassicaceae</Keyword>
<Keyword MajorTopicYN="N">glucosinolate</Keyword>
<Keyword MajorTopicYN="N">glutathione</Keyword>
<Keyword MajorTopicYN="N">glutathione S-transferase (GST)</Keyword>
<Keyword MajorTopicYN="N">sulfur-containing phytoalexin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>07</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>10</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>11</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>11</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>11</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30483292</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2018.01639</ArticleId>
<ArticleId IdType="pmc">PMC6243137</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2015 Jul;168(3):814-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26023163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2010 Jul;3(4):751-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20457641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2009;54:57-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18811249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 8;280(27):25590-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15866872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2002 Jul;49(5):515-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12090627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biol Hung. 2015 Dec;66(4):406-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26616373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2007 Sep;3(9):1687-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17941713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arabidopsis Book. 2010;8:e0131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22303257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 2011 Aug;28(8):1381-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21681321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2018 Jun;163(2):138-154</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29194649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6478-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17420480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2013 Jan;100(1):194-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23281391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2010 Mar;71(4):338-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20079507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 Aug;5(8):575-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19483696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2009 Feb 6;379(2):417-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19118534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2012 Mar;14(2):104-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22326477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(4):1207-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19174456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2015 Apr;32:186-194</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25614070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jun;54(6):1015-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18346197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2017 Nov 08;18(11):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29117115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2013 Dec 16;52(51):13625-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24151049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jun;23(6):2456-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21712415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Apr;42(2):218-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15807784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2012 May 1;169(7):740-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22342657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Org Biomol Chem. 2010 Nov 21;8(22):5150-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20848032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Oct 3;283(40):26996-7006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18693252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jan 2;323(5910):101-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19095900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Feb;77(3):367-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24274116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Jun 28;8(1):9809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29955088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):1910-1915</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28154137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 Jan;176(1):538-551</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29122987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 May;15(5):283-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20303821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jan;37(1):104-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chembiochem. 2012 Sep 3;13(13):1846-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22807086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1995 Jan 17;206(2):748-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7826396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2013 Sep 10;167(3):296-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23830903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jan;49(1):159-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17144898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1993 Dec 6;335(2):189-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8253194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2016 Jan;28(1):130-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26721862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2010 May 15;167(8):643-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20031254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2017 Apr 26;117(8):5521-5577</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28418240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Sep;55(5):774-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18466300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:303-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Apr 22;6:277</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25954298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Mar;143(3):1189-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17220357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jan;23(1):364-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21239642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Jul;168(3):849-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25953104</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pologne</li>
</country>
</list>
<tree>
<country name="Pologne">
<noRegion>
<name sortKey="Czerniawski, Pawel" sort="Czerniawski, Pawel" uniqKey="Czerniawski P" first="Paweł" last="Czerniawski">Paweł Czerniawski</name>
</noRegion>
<name sortKey="Bednarek, Pawel" sort="Bednarek, Pawel" uniqKey="Bednarek P" first="Paweł" last="Bednarek">Paweł Bednarek</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/SulfurTransferaseV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000223 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000223 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    SulfurTransferaseV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30483292
   |texte=   Glutathione S-Transferases in the Biosynthesis of Sulfur-Containing Secondary Metabolites in Brassicaceae Plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30483292" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SulfurTransferaseV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 14:58:45 2020. Site generation: Sat Nov 21 14:59:12 2020